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Received 23 June 1989, in final form 29 August 1989 

Abstract. We present an extension of classical molecular dynamics (MD) to include the forces 
calculated from electronic degrees of freedom using the tight-binding (TB) approximation. 
The combined MD-TB problem is solved using the simulated annealing techniques. As an 
example we study the structures and energetics of small silicon clusters, containing up to 
10 Si atoms. 

1. Introduction 

Classical molecular dynamics (MD) has been used for many years for solving various 
physical problems [l]. MD simulation is most useful for studying materials properties at 
non-zero temperatures, in cases where quantum mechanical effects in the ionic degrees 
of freedom are small. The central problem in MD is usually to find a classical inter-atomic 
potential which produces all or at least most of the observable physical quantities, by 
mimicking the quantum mechanics of the electrons. In most cases these potentials 
contain numerous parameters [2-4]. Fitting all these parameters requires a great deal 
of intuition and work, and after all doubts remain if one uses the potentials in environ- 
ments very different from where they were developed, e.g. uses bulk potentials for small 
clusters [5]  or surface problems. 

There are several accurate quantum mechanically based methods for solving total 
energies of low-symmetry systems such as the density functional theory (DFT) and 
its implementation using either periodic supercell or Green function-techniques. DFT 
methods give reliable results for many systems with the only input being the positions 
and atomic numbers of the atoms. Usually, however, these computational methods do 
not allow for the inclusion of real dynamics. 

There is one remarkable exception, the method developed by Car and Parrinello 
(CP) [6]. CP use Dmcombined with MD and update electronic and ionic degrees of freedom 
in unison. The method has been applied for example for solving the structures of small 
Si [7,8], S [9], Se [lo] clusters and disordered Si [ l l ] .  

However, the CP method is computationally very demanding and feasible for rela- 
tively small systems only, up to a few tens of atoms. It is worthwhile to develop a method 
which is computationally faster and in some sense closer to normal MD. A natural 
alternative is to use the tight-binding (TB) (or Huckel) approximation for solving the 
electronic problem and to combine it with MD. Simulated annealing can then be used to 
tackle the whole optimisation problem. 
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In section 2 we introduce the TB formalism suitable for MD. A method for solving the 
Lagrange multipliers is also introduced. In section 3 the simulated annealing technique 
is discussed. In section 4 the MD-TB method is applied to Si clusters and the results are 
presented. While this paper was being written we became aware of similar recent work 
[12] on the Si3 trimer. Comparison with the work in [12] and other cluster studies is 
given. Section 5 contains a summary and discussion. 

2. Molecular dynamics and the tight-binding approximation 

In the TB approximation a minimal basis set is usually applied (only those orbitals which 
are occupied or partially occupied in the free atom), and the matrix elements of the 
Hamiltonian are considered as adjustable parameters. These parameters (or matrix 
elements) are adjusted to fit for example known band structures. The basis functions 
are often assumed to be orthogonal, but we use here the more general non-orthogonal 
TB approximation. 

Let us first expand the electronic wavefunction of a collection of atoms as a linear 
combination of some suitably chosen localised basis functions qu (Gaussian functions, 
atomic orbitals, etc) 

a'(.) = 2 cinqu(r - R , )  
un 

whereR, denotes the position of the nth atom (n  = 1, . . . , N ) ,  and ilabels the electronic 
eigenstates. 

The Hamiltonian and overlap matrices are defined as 

J 

where H is the single-particle Hamiltonian. The matrix elements Hup,nm are now taken 
in the TB approximation as adjustable parameters with a canonical dependence on the 
distance between atoms and on the symmetry of the basis states [13]. In orthogonal TB 
it is assumed that the basis functions are orthonormal (Sup,nm = dVp6,,) but for example 
in the case of silicon this does not give a very good band structure for excited states. The 
non-orthogonal TB method, where the Sup,nm is not a unit matrix, does reproduce the 
full band structure quite well [ 141. 

The Schrodinger equation can be written as 

For notation clarity we change the numeration of Hup,nm to Hnm. 

for the coefficients C': 
The requirement that the wavefunctions a' are orthonormal leads to the constraints 

2 c;snmci, = 6'j. 
nm 

(4) 

Now instead of solving equation (3) as an eigenvalue problem we search for a 
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minimum of the energy expectation value (@lHl@). Thus one has to minimise the 
following functional: 

E({C’} ,  {R,})  = CiHmmCh = Ci * HC’ 
inm i 

which also depends on the atomic positions R, via H .  
One can now replace the original quantum mechanical eigenvalue problem (3) by a 

classical potential problem, where the minimum of the potential E({C,}, {R,})  cor- 
responds to the solution of the eigenvalue problem (3). The dynamics that one derives 
from that classical system is not the true dynamics but, if the mass parameter associated 
with the electronic part is much smaller than the true mass of the atoms, one can 
consider the dynamics of the atoms as the real dynamics-that is the Born-Oppenheimer 
approximation [6] .  In this limit, one can perform real MD simulations, and not only find 
static minima for collections of atoms. 

The same algorithm can be used to solve the electronic problem only by making the 
mass of the atoms large compared with the electronic ‘mass’. If one needs only the few 
lowest eigenvectors, the algorithm is at least for very large systems faster than normal 
matrix diagonalisation. The time that the algorithm takes is proportional to N 2 ,  where 
N is the dimension of the Hamiltonian matrix, whereas the cost of diagonalisation 
routines is proportional to N 3 .  

2 = 4p 2 ICi12 + am 2 IR,I2 - ( 6 )  

where p is the (fictitious) electronic mass parameter, m is mass of the atoms and AV 
denotes the Lagrange multipliers associated with the orthonormalisation constraints. 
The ‘external’ potential U({R,}) is introduced as a possible short-range correction poten- 
tial for the TB description [ 151. 

We can write the Lagrangian for the TB system as 

C’ HC’ + Aij(Ci SCj - Si’)  + U({R,})  
i n I i j  

The equations of motion for the coefficients Ci are easy to derive as 

The equations of motion for the atoms are not as straightforward. One can use the 
Hellmann-Feynman type of force: 

6 ~ / 6 ~ ,  = ~ ( @ . I H I @ ) / ~ R ,  = ( @ / 6 ~ / 6 ~ ,  I@). (8) 
We neglect the residual R ,  dependence of Ai’ and obtain 

The integration of the equations of motion can be carried out by using some standard 
algorithm such as that in [16], if the Lagrange multipliers in equation (7) can be solved. 
We assume that ;small change in the positions of the atoms does not change the overlap 
matrix S (this is trivially true for the orthogonal TB method). Then one can implement 
the ideas in [17] to solve the Lagrange multipliers for each time step, demanding that 
the constraints (4) hold for every step. To second order in At, one can write 

( A t ) 2  
C ‘ ( t  + At) = Cb + - A”SC](t) = Cb + 6C’ 

P ]=1 

where Cb stands for everything which does not depend on A‘]. 
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The calculation proceeds by first calculating the lowest eigenvector (C') ,  then the 
next lowest and so on. It means that when calculating the ith eigenvector the lower 
eigenvectors are known, and from the constraint equation for j < i one obtains 

6 c i .  scj = - cb . scj 

For i = j ,  

& AikCb .~2ck + AikAilCh . S3ck 
i i 

( A t ) 2  k = l  k l = l  

= [p2/(At) ' ] ( l  -Cb .SCb)  (i=j). (12) 

From equations (1 1) and (12), Aik for k = 1, . . . , i can be solved. In principle the resulting 
equation can be solved exactly but this is quite time consuming, and one can make a 
further approximation. Let us assume that 

(13) Aii 5 - Eidii 
. .  

which is accurate at least near the global minimum where C = 0 and HCi -- ET' .  
With this approximation, equation (12) becomes a simple polynomial 

(hii)'C; * S3Ci + 2 [ , ~ / ( A t ) ~ ] h " C b  * S2Ci + [p2/(At)'](Ci - SCb - 1) = 0 (14) 
from which Aii is easy to solve. 

When the value of Aii is known, the remaining Aij-values can be solved by using 
equation ( l l ) ,  but better results are obtained if one just ignores the A" whence equation 
(1 1) becomes 

where Djk = Cj S2Ck and ai = - pCb - SCj / (A t )2 .  Now Djk is a square matrix and has a 
well defined inverse. Also D is easy to invert, because it is nearly a unit matrix: D = 1 + E 

gives D-' = 1 - E ,  where E contains small non-diagonal elements. Thus. 
i - 1  

From equations (14) and (16), one can efficiently compute the Lagrange multipliers. 
For example for an orthogonal TB scheme the time that it takes to solve the Lagrange 
multipliers is proportional to M 2 N ,  where M is the number of eigenvalues required and 
N is the length of the vector Ci.  

The above procedure is easy to reduce for an orthogonal TB form by putting simply 
s.. = a... 

11 11 

3. Simulated annealing 

Simulated annealing is a very general minimisation procedure for finding a global 
optimum. It has been introduced in [18] and subsequently applied in various problems 
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to physics [6, 191 as well as for several optimisation problems in computer science 
[20,21]. Originally, simulated annealing was used in the context of Monte Carlo methods 
but the method that we use is more suitable for dynamical systems. The method was first 
introduced in [6]. 

In simulated annealing, one aims to minimise some energy functional (or in general 
a cost function) E(Ci) which depends on variables C, (i = 1, . . . , N ) .  Usually there are 
some constraints U, (i = 1, .  . . , M ,  where M < N )  for the variables Ci. Aphysical analogy 
is that E is a classical potential in space S2 and the variables Ci fix one point in that space. 
One can use the normal Lagrangian formalism to calculate the equation of motion for a 
fictitious particle represented by coordinates C = {C,} and an arbitrary mass. 

The Lagrangian of the combined system is 

where A, is a Lagrange multiplier associated with the constraint O, and the m, are the 
mass parameters for the particles. 

By using a normal variational procedure, one can derive equations of motion for the 
variables C, as 

m,C, = Sg/SC,. (18) 

To find the minimum of E( C,), one starts from some arbitrary point CO and initial velocity 
components C, so that the kinetic energy corresponds to a given temperature T. By 
integrating the equations of motion, one allows the system to evolve and slowly reduces 
the temperature (the kinetic energy of the system). If the cooling is slow enough, the 
system should finally reach the global minimum. How many time steps this will take 
depends crucially on the system itself but also on the cooling schedule. One simple way 
to cool the system is the so-called exponential cooling where the cooling speed depends 
linearly on T: 

d T / d t =  -UT.  (19) 

Above, t is  the iteration ‘time’ and U is a constant. In this schedule the number of time 
steps which are needed to reach the minimum depends on the value of U. The exponential 
cooling is somewhat problematic because it has the tendency to cool too fast at the end 
of the calculation. 

There are several more sophisticated cooling schedules [20,22], which allow one to 
solve the problem in much fewer time steps than needed for the exponential cooling 
schedule [23]. Keeping our programs simple, we have used the exponential cooling 
method, but other strategies can be implemented in a straightforward way. 

4. Application to silicon clusters 

The TB formalism presented here is based on the work in [15,24], where the TB method 
was used to find an initial atomic configuration for the density-functional calculation. 
Also in [12] a method similar to ours was used for studying the Si, trimer and silicon 
surfaces. 
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In a TB formulation for silicon we take four basis functions for each atom site-these 
basis functions are labelled (s,p,, p y ,  p z ) .  We choose the orthogonal TB parametrisation 
first introduced in [25]: 

E, = -5.25 eV 

V,,, = -1.938 eV Vppn = -1.075 eV. 

The V are the Slater-Koster [26] parametrised nearest-neighbour hopping integrals, 
corresponding to a bulk distance of 2.35 A. These hopping integrals have the distance 
dependence l/lRi - R,I2 [27]. The diagonal terms E are assumed to be independent of 
the distance between atoms. 

In the dynamical simulation the coordination of atoms changes continuously, and 
thus one also needs the angular dependence of each matrix element. They can be found 
from [26] as 

Ep = 1.20 eV 

Vspo = 1.745 eV Vpp, = 3.050 eV 

H ,  = -HXs  = COS 8, Vspo 

H,, = cos2 8, Vpp, + sin2 8, Vppn 

H,, = H,, = COS e, COS e, (vppo - vppn) 
where 8, is the angle between the vector R, - Rj and the x axis. 

When building the TB matrix, we have used a smooth spatial cut-off because of the 
dynamical nature of our simulation program. We choose the following cut-off function: 

where rcut is the cut-off distance, which should lie between the nearest-neighbour 
(2.35 A) and the next-nearest-neighbour distances of bulk silicon (3.83 A). The value 
of A should not be too small, as otherwise the cut-off can cause spurious forces. We have 
used the value rcu, = 3.3 A and for A we have taken the value of 0.2 A. The results are 
not sensitive to changes in these values. Using this smooth cut-off differs from the work 
in [15,24] and this brings about some differences in the results (see below). 

The 'band structure' energy can be written as 
2N 

ETB = 2 2 C' * HC' - N E P e  
i = l  

where N is the number of atoms in the cluster and E@' is the energy of a free Si atom. 
The distance dependence used above for the V-values does not give correct repulsion 

at short distances, and a short-range correction is needed. The correction potential is 
written as a sum of pair potentials: 

where E,,,, can be calculated as the difference between the ab initio pair potential for 
Si, [15] and the corresponding TB potential: 

Another correction term, which depends only on the number of occupied bonds in 
the cluster, is also used in [15]: 
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The coefficients Q) were chosen to reproduce the cohesive energies of both diamond and 
BCC structures of silicon: 

q2 = 1.945eV 

To apply the bond-counting term, one has to define when two atoms are bonded. When 
the distance between atoms is less than some cut-off distance rcut, we consider them to 
form a bond. Owing to the dynamical nature of our method, we again must introduce a 
smooth cut-off function for bond counting as 

cpl = 0.225 eV q 3  = -1.03 eV. 

The same cut-off parameters as before ( A  and rcut) are used. 

introduced in [15,24]: 
A ‘Hubbard’ term which prevents large charge transfers between atoms was also 

where 
2N 4i 

and the value of U is about 1 eV. The results in [15, 241 were found to be not very 
sensitive to the value of U ,  and accordingly we usually choose it to be zero, although 
other values can easily be tested (see below). 

In the simulated annealing, we set the mass parameters to ,U = 1 .0 and m = 200-1000 
and the time step is chosen as At = s. We have used the exponential cooling 
schedule and used values of U = 0.05-0.3 for the cooling parameter. As for initial values 
for the atomic positions R,, we choose different plausible starting configurations. We 
have used several different initial configurations for each cluster, and in particular for 
the larger clusters ( N  = 8-10) we have chosen initial geometries near those proposed in 
[28,29] and used relatively high cooling speeds. Thus, in the case of the larger clusters, 
we have not done full global minimum searches but find at least local minima near the 
initial configurations. 

The initial velocities for atoms R, and initial values for C, and Cc have been chosen 
randomly. Subsequently the velocities have been scaled so that the kinetic energy 
corresponds to a given initial temperature. 

Small (between two and 10 atoms) Si clusters have been investigated as a rep- 
resentative application of the general scheme. The MD-TB method is particularly suitable 
for finding minimum configurations for small clusters. It is clearly more physically based 
than methods relying on classical potentials derived from bulk properties, which do not 
give good results in the case of silicon [ 5 ] .  In most of the published ab initio calculations, 
one has resorted to local minimisation-typically only the bond lengths have been 
optimised for some selected geometries. These methods often overlook low-symmetry 
minima. 

Our results are in general similar to those given by ab initio quantum chemistry 
(Hartree-Fock-based) calculations [28, 291, but in the case of Si, we find a different 
minimum. The results are summarised in tables 1 and 2 and figures 1-3. 
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Table 1. Binding energies of Si clusters. N is the number of atoms, and the second column 
gives the results for the energy minima. The third column is the energy of the same structure 
but including the Hubbard correction U = 1 eV (see text). The fourth column contains the 
scaled energies obtained in [29]. The last column lists the binding energy per atom. 

2 3.07 
3 7.33 
4 12.63 
5 15.58 
5 15.28 
6 20.82 
7 26.56 
8 29.67 
9 33.14 

10 39.06 

3.07 
6.96 

12.45 
15.38 
14.58 
20.49 
26.52 
29.29 
32.94 
38.84 

3.12 
7.61 

12.68 

16.48 
21.62 
26.59 
29.17 
32.27 
38.16 

1.54 
2.44 
3.16 
3.12 

3.47 
3.79 
3.71 
3.68 
3.91 

Our results differ in some cases from those obtained in [15], because of using the 
smooth cut-off function and a different cut-off distance. Typically our results are closer 
to the ab initio calculations [8,28,29] than to those in [15]. 

As mentioned earlier, we have not used the 'Hubbard' correction in the dynamical 
simulations but have tested the energetics of the found geometries by using different 
values of U (equation (28)). The energy differences are in general quite small (see table 
l ) ,  and the 'Hubbard' correction does not change the ordering of the minima at least for 
U < 2.0 eV. 

The obtained binding energy of Si2 is E2 = -3.06 eV and the equilibrium distance 
between the atoms is d = 2.27 A. The experimental value for the binding energy of the 
Si2 dimer is 3.24 eV [28]. 

For Sig the binding energy is E3 = -7.33 eV and the cluster is an isosceles triangle 
with a side length of 2.26 A and an opening angle 8 of 85.3". These results are very close 
to those obtained in [12,15] and the energy is in good agreement with the experimental 
values of -7.4 2 0.5 and -7.7 2 0.2 eV [28]. 

For Siq the minimum structure is a flat rhombus with a side length of 2.39 A and 
diagonal lengths of 2.54 and 4.05 A. The binding energy of this structure is E4 = 
- 12.63 eV. The symmetric tetrahedron structure has a higher energy of E = - 10.62 eV. 

In the case of Si,, we find a minimum corresponding to a low-symmetry structure. 
The energy of this structure is E5 = 7 15.58 eV. We also find a local energy minimum 
for the trigonal bipyramid structure [15], which has an energy E of - 15.28 eV. The side 
length of the base triangle is 3.56 A and the distance from vertex to base is 2.48 A. The 
minimum structure is quite asymmetric and therefore presumably not recognised in 
other work. We have also calculated the energy of this minimum structure and the 
trigonal bipyramid structure using another TB parametrisation [30]. In this case the 
energy difference between these two structures is almost zero. 

For Si6 the tetracapped trigonal prism [28] gives the minimum energy of E ,  = 
-20.82 eV, which is close to the energy of a distorted octahedron structure [15] of E = 
-20.44 eV. In the minimum configuration of Si, the bond lengths are between 2.4 and 
2.8 A (see table 2). For the distorted octahedron the side length of the base square is to 
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Table 2. Bond lengths for Si clusters. N is the number of atoms, and the second column 
defines the bond (see figure 1).  The third column gives the bond lengths from our calculations. 
The fourth column contains the corresponding bond lengths from ab initio calculations 
[28,29]. 

2 

3 

4 

5 

5 a  

6 

9 

10 

1-2 

1-2 

1-2 
1-3 

2-4 
2-5 
1-2 
2-3 
1-5 

1-2 
1-4 
4-5 

1-2 
1-3 
1-5 
3-5 
5-6 

3-4 
1-3 
1-2 

1-3 
1-5 
1-2 
2-3 
1-6 
2-5 
2-6 
3-4 
4-5 
5-6 
1-8 
3-8 

1-6 
1-2 
1-9 

1-2 
1-9 
5-9 
1-10 
1-3 
3-9 

2.27 

2.26 
8 = 85.3" 

2.39 
2.54 

2.41 
2.44 
3.07 
2.59 
2.35 

3.56 
2.48 
2.78 

2.77 
2.52 
2.62 
2.63 
2.36 

2.55 
2.60 
2.88 

2.81 
2.74 
3.18 
2.72 
2.53 
2.74 
2.64 
2.77 
3.50 
2.48 
2.40 
2.55 

2.57 
2.53 
3.06 

3.11 
2.67 
2.78 
2.52 
2.57 
2.54 

2.23 

2.17 
l3 = 77.2" 

2.30 
2.40 

3.26 
2.34 
2.78 

2.86 
2.49 
2.69 
2.93 
2.38 

2.48 
2.47 
2.58 

2.53 
2.56 
3.26 
2.57 
2.77 
2.79 
2.49 
2.48 
2.32 
2.48 
2.37 
2.42 

2.57 
2.50 
2.53 

2.75 
2.56 
2.54 
2.35 
2.45 
2.54 

a In the case of Si5 we have compared the bond lengths of the trigonal bipyramid structure. 
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Figure 1. Structures of small silicon clusters ( N  = 
2-10). In some clusters, not all the bonds are 
drawn; also the broken lines are used for clarity. N = 6  
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2.65 8, and the distance from cap to basis is 2.54 A. The octahedron structure is also the 
minimum for the classical Lennard-Jones cluster, where the atoms interact via a simple 
pair potential [31]. 

For Si, the pentagonal bipyramid structure is most stable. The side length of the basis 
pentagon is 2.55 A and the cap-to-basis distance is 2.60 A. The energy of this structure 
is E ,  = -26.56 eV. These results are very close to the values obtained in [29]. The 
tricapped tetrahedron structure [29] has the energy E = -25.50 eV. The pentagonal 
structure is also the minimum for the classical Lennard-Jones cluster [31]. 

For Si, we find the minimum structure to be like the Si, structure with one added 
atom [3]. The energy of this structure is E ,  = -29.67 eV, and the bond lengths are close 
to the values found in [29]. We also find a local minimum at the energy E= -28.05 eV, 
corresponding to the distorted bicapped octahedron structure which is found to be the 
minimum in [29]. 

For Si9 the tricapped trigonal prism structure [29] is most stable. The energy of this 
structure is E ,  = -33.14 eV. The distorted tricapped octahedron structure has the 
energy E = -31.34 eV. The energies of these two structures, were found to be almost 
equal in [29]. 

For Silo the tetracapped trigonal prism structure [29] gives the minimum energy of 
E,,, = -39.06 eV. The tetracapped octahedron structure has an energy E of -36.07 eV. 
The bond lengths involving the capping atoms are 2.43 A while in the octahedron they 
are 3.1 A. 

For the larger clusters ( N  = 8-10) our TB parametrisation seems to favour close- 
packed structures. In [29], octahedron structures were found to be more stable than 
or equally stable as the close-packed structures. In our calculations the octahedron 
structures have higher energies. 

It is quite surprising that the present results are so close to more elaborate (ab 
initio-type) calculations, considering how simple a model we have used. There are few 
experimental results for small silicon clusters, so we basically have to compare our results 
with ab initio type of calculations [8, 15,28, 291. The energies correspond quite well to 
the scaled energies by Raghavachari and Rohlfing [29] (see table 1). The bond lengths 
are usually slightly longer (typically 0.1 A; see table 2) than in ab initio calculations. The 
differences from the results in [15] are most probably due to the smooth cut-off function 
introduced here. 

The fragmentation spectrum has been experimentally observed [32,33] for small Si+ 
clusters ( N  = 2-12). These experiments show that Clusters with six, seven and ten atoms 
should be the most stable. Our calculations give a fragmentation spectrum (figure 3) 
which agrees with these results. 

5. Discussion 

The method presented here is a general, flexible way to extend classical MD to include 
many-atom non-classical interactions. It has the advantages of normal MD, as one can 
study systems at non-zero temperatures, and one can also use the knowledge of existing 
MD simulation codes. The method takes the quantum mechanical effects into account at 
a more fundamental level than MD does, and therefore we believe that it describes 
‘quantum mechanical’ systems better and with fewer parameters than classical MD does. 

On comparison of the method with ab initio methods, it is much faster and therefore 
useful also for larger systems. The example of silicon clusters shows that a proper TB 
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parametrisation gives, for small clusters, results comparable with those of ab initio 
calculations. For larger systems, including defects and surfaces, the parametrisation 
should be even easier. 
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